s0m1ng

二进制学习中

逆向中的AES(二)

前言:

逆向工程中往往使用aes加密的程序不是用的查表法aes,就是用的白盒aes,让你难以分析,傻乎乎的使用aes基础算法很容易被破解

查表法实现的aes:

在前一篇文章中我们详细讲解了AES的每一轮中具体的四层结构,以加密过程为例分别是:字节代换层、行移位层、列混淆层和轮密钥加层

对于查表法实现,就是要将每一轮中的前三层操作(字节代换层、行移位层和列混淆层)合并为查找表。

查表法的核心思想是将字节代换层、ShiftRows层和MixColumn层融合为查找表:每个表的大小是32 bits(4字节)乘以256项,一般称为T盒(T-Box)或T表。加密过程4个表(Te),解密过程4个表(Td),共8个。每一轮操作都通过16次查表产生。

算法中定义T表实现为:

1
2
3
4
5
T0[x] = (2·S[x])<<24 | (S[x])<<16 | (S[x])<<8 | (3·S[x])
T1[x] = (3·S[x])<<24 | (2·S[x])<<16 | (S[x])<<8 | (S[x])
T2[x] = (S[x])<<24 | (3·S[x])<<16 | (2·S[x])<<8 | (S[x])
T3[x] = (S[x])<<24 | (S[x])<<16 | (3·S[x])<<8 | (2·S[x])

其中:

  • S[x] 是 S-box 输出;

  • 2·S[x] 表示有限域 GF(2^8) 下的乘法(即 xtime 运算)。

原理:

由于aes加密流程中的字节代换和行移位可随意更改顺序而不影响加密结果,所以,我们把行移位放在最前面

查表法aes

先不管行移位,把行移位之后的矩阵状态设为

只看第一列的变化,设

1
2
3
4
5
a0' = S[a0]
a1' = S[a1]
a2' = S[a2]
a3' = S[a3]

1
2
3
4
5
6
c0 = 2·a0' ⊕ 3·a1'1·a2' ⊕ 1·a3'
c1 = 1·a0' ⊕ 2·a1'3·a2' ⊕ 1·a3'
c2 = 1·a0' ⊕ 1·a1'2·a2' ⊕ 3·a3'
c3 = 3·a0' ⊕ 1·a1'1·a2' ⊕ 2·a3'


1
2
3
4
5
T0[x] = (2·S[x], S[x], S[x], 3·S[x])   // 合并为一个 32 位值
T1[x] = (3·S[x], 2·S[x], S[x], S[x])
T2[x] = (S[x], 3·S[x], 2·S[x], S[x])
T3[x] = (S[x], S[x], 3·S[x], 2·S[x])

所以

1
2
3
4
5
T0[a0] = [2·S[a0], S[a0], S[a0], 3·S[a0]]
T1[a1] = [3·S[a1], 2·S[a1], S[a1], S[a1]]
T2[a2] = [S[a2], 3·S[a2], 2·S[a2], S[a2]]
T3[a3] = [S[a3], S[a3], 3·S[a3], 2·S[a3]]

于是

1
c0c1c2c3 = T0[a0] ⊕ T1[a1] ⊕ T2[a2] ⊕ T3[a3]

现在再来考虑行移位的影响,只要把a1-a15的对应标号改掉就行

1
2
3
4
t0 = T0[a0] ^ T1[a5] ^ T2[a10] ^ T3[a15] ^ roundKey[0];
t1 = T0[a4] ^ T1[a9] ^ T2[a14] ^ T3[a3] ^ roundKey[1];
t2 = T0[a8] ^ T1[a13]^ T2[a2] ^ T3[a7] ^ roundKey[2];
t3 = T0[a12]^ T1[a1] ^ T2[a6] ^ T3[a11] ^ roundKey[3];

是最后加密的结果

代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#include <stdlib.h>
#ifndef AES_H
#define AES_H
#include <stdint.h>
typedef struct AES_Key {
uint32_t* ek; // AES加密轮密钥
uint32_t* dk; // AES 解密轮密钥
uint32_t nr; //加密轮数
} AES_Key;
int AES_KeyInit(uint8_t* key, AES_Key* aes_key, size_t bits);
void AES_Encrypt(uint8_t* plaintext, uint8_t* ciphertext, AES_Key aes_key);
void AES_Decrypt(uint8_t* ciphertext, uint8_t* plaintext, AES_Key aes_key);
void AES_KeyDelete(AES_Key aes_key);
#endif
static const uint8_t Sbox[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
0xB0, 0x54, 0xBB, 0x16 };
static const unsigned char SboxIV[256] = {
0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB,
0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB,
0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E,
0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25,
0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92,
0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84,
0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06,
0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B,
0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73,
0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E,
0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B,
0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4,
0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F,
0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF,
0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61,
0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D
};
static const uint32_t TE[256] = {
0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd,
0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d,
0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7,
0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4,
0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1,
0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e,
0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e,
0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46,
0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7,
0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe,
0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a,
0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2,
0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e,
0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256,
0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4,
0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa,
0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1,
0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42,
0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158,
0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22,
0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631,
0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a };
static const uint32_t TD[256] = {
0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1,
0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25,
0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67,
0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6,
0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3,
0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd,
0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182,
0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94,
0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2,
0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5,
0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c, 0x8acf1c2b, 0xa779b492,
0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a,
0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa,
0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46,
0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997,
0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb,
0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48,
0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927,
0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a, 0x0c0a67b1, 0x9357e70f,
0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16,
0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad,
0x2db6a8b9, 0x141ea9c8, 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd,
0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc,
0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120,
0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3,
0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422,
0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1,
0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4,
0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8,
0x2e39f75e, 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3,
0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4,
0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6,
0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331,
0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815,
0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d,
0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f,
0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252,
0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89,
0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f,
0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86,
0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c,
0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190,
0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742 };
#define rotr32(value, shift) ((value >> shift) ^ (value << (32 - shift)))
int AES_KeyInit(uint8_t* key, AES_Key* aes_key, size_t bits) {
uint32_t Rcon[10] = { 0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80, 0x1B, 0x36 }; //轮常数
uint32_t nr = 10 + (bits - 128) / 32; //加密轮数 Nr
uint32_t nk = bits / 32; //密钥字数 Nk
uint32_t tmp, tmp1;
aes_key->nr = nr;
//-----------malloc-------------
uint32_t* w = (uint32_t*)malloc(sizeof(uint32_t) * 4 * (nr + 1));
if (w == (void*)0) {
return 0;
}
uint32_t* d = (uint32_t*)malloc(sizeof(uint32_t) * 4 * (nr + 1));
if (d == (void*)0) {
free(d);
return 0;
}
//--------------Load as BigEndian---------------
for (int i = 0; i < nk; i++) {//将总的bits,每32个(四个字节)分一组,每一组用大端序来进行表示
w[i] = (key[4 * i + 0] << 24) | (key[4 * i + 1] << 16) |
(key[4 * i + 2] << 8) | (key[4 * i + 3]);
}
//------------KeyExpand-----------------
for (int i = nk; i < 4 * (nr + 1); i++) {
tmp = w[i - 1];
if (i % nk == 0) {
/* tmp = SubWord(RotWord(w[i-1])) */
tmp1 = tmp;
tmp = Sbox[(tmp1 >> 24) & 0xFF];
tmp |= Sbox[(tmp1 >> 0) & 0xFF] << 8;
tmp |= Sbox[(tmp1 >> 8) & 0xFF] << 16;
tmp |= (Sbox[(tmp1 >> 16) & 0xFF] ^ Rcon[i / nk - 1]) << 24;
}
else if (nk > 6 && i % nk == 4) {
/* temp = SubWord(w[i-1]) */
tmp1 = tmp;
tmp = Sbox[(tmp1 >> 0) & 0xFF];
tmp |= Sbox[(tmp1 >> 8) & 0xFF] << 8;
tmp |= Sbox[(tmp1 >> 16) & 0xFF] << 16;
tmp |= Sbox[(tmp1 >> 24) & 0xFF] << 24;
}
w[i] = w[i - nk] ^ tmp;
}
aes_key->ek = w;
//------------TransKey-----------
for (int i = 0; i < 4; i++) {
d[i] = w[i];
}
for (int i = 4; i < 4 * nr; i++) {
//-----------MixCol IV-----------
d[i] = TD[Sbox[(w[i] >> 24) & 0xFF]];
tmp = TD[Sbox[(w[i] >> 16) & 0xFF]];
d[i] ^= rotr32(tmp, 8);
tmp = TD[Sbox[(w[i] >> 8) & 0xFF]];
d[i] ^= rotr32(tmp, 16);
tmp = TD[Sbox[(w[i] >> 0) & 0xFF]];
d[i] ^= rotr32(tmp, 24);
}
for (int i = 0; i < 4; i++) {
d[4 * nr + i] = w[4 * nr + i];
}
aes_key->dk = d;
return 1;
}
void AES_KeyDelete(AES_Key aes_key) {
free(aes_key.ek);
free(aes_key.dk);
}

void AES_Encrypt(uint8_t* plaintext, uint8_t* ciphertext, AES_Key aes_key) {
uint32_t s[4];
uint32_t t[4];
uint32_t tmp;
//------------Load as BigEndian------------------
for (int i = 0; i < 4; i++) {
s[i] = (plaintext[4 * i + 0] << 24) | (plaintext[4 * i + 1] << 16) |
(plaintext[4 * i + 2] << 8) | (plaintext[4 * i + 3]);
}
//----------------AddRoundKey----------------
s[0] ^= aes_key.ek[0];
s[1] ^= aes_key.ek[1];
s[2] ^= aes_key.ek[2];
s[3] ^= aes_key.ek[3];
for (int i = 1; i < aes_key.nr; i++) {
//-------ShiftRow + SubByte + MixCol-------------
// t0
t[0] = TE[(s[0] >> 24) & 0xFF];
tmp = TE[(s[1] >> 16) & 0xFF];
t[0] ^= rotr32(tmp, 8);
tmp = TE[(s[2] >> 8) & 0xFF];
t[0] ^= rotr32(tmp, 16);
tmp = TE[(s[3] >> 0) & 0xFF];
t[0] ^= rotr32(tmp, 24);
// t1
t[1] = TE[(s[1] >> 24) & 0xFF];
tmp = TE[(s[2] >> 16) & 0xFF];
t[1] ^= rotr32(tmp, 8);
tmp = TE[(s[3] >> 8) & 0xFF];
t[1] ^= rotr32(tmp, 16);
tmp = TE[(s[0] >> 0) & 0xFF];
t[1] ^= rotr32(tmp, 24);
// t2
t[2] = TE[(s[2] >> 24) & 0xFF];
tmp = TE[(s[3] >> 16) & 0xFF];
t[2] ^= rotr32(tmp, 8);
tmp = TE[(s[0] >> 8) & 0xFF];
t[2] ^= rotr32(tmp, 16);
tmp = TE[(s[1] >> 0) & 0xFF];
t[2] ^= rotr32(tmp, 24);
// t3
t[3] = TE[(s[3] >> 24) & 0xFF];
tmp = TE[(s[0] >> 16) & 0xFF];
t[3] ^= rotr32(tmp, 8);
tmp = TE[(s[1] >> 8) & 0xFF];
t[3] ^= rotr32(tmp, 16);
tmp = TE[(s[2] >> 0) & 0xFF];
t[3] ^= rotr32(tmp, 24);
//-------------AddRoundKey---------------
s[0] = t[0] ^ aes_key.ek[4 * i + 0];
s[1] = t[1] ^ aes_key.ek[4 * i + 1];
s[2] = t[2] ^ aes_key.ek[4 * i + 2];
s[3] = t[3] ^ aes_key.ek[4 * i + 3];
}
//------------ShiftRow + SubByte-----------
// t0
t[0] = Sbox[(s[0] >> 24) & 0xFF] << 24;
t[0] |= Sbox[(s[1] >> 16) & 0xFF] << 16;
t[0] |= Sbox[(s[2] >> 8) & 0xFF] << 8;
t[0] |= Sbox[(s[3] >> 0) & 0xFF] << 0;
// t1
t[1] = Sbox[(s[1] >> 24) & 0xFF] << 24;
t[1] |= Sbox[(s[2] >> 16) & 0xFF] << 16;
t[1] |= Sbox[(s[3] >> 8) & 0xFF] << 8;
t[1] |= Sbox[(s[0] >> 0) & 0xFF] << 0;
// t2
t[2] = Sbox[(s[2] >> 24) & 0xFF] << 24;
t[2] |= Sbox[(s[3] >> 16) & 0xFF] << 16;
t[2] |= Sbox[(s[0] >> 8) & 0xFF] << 8;
t[2] |= Sbox[(s[1] >> 0) & 0xFF] << 0;
// t3
t[3] = Sbox[(s[3] >> 24) & 0xFF] << 24;
t[3] |= Sbox[(s[0] >> 16) & 0xFF] << 16;
t[3] |= Sbox[(s[1] >> 8) & 0xFF] << 8;
t[3] |= Sbox[(s[2] >> 0) & 0xFF] << 0;
//------------AddRoundKey-------------
s[0] = t[0] ^ aes_key.ek[4 * aes_key.nr + 0];
s[1] = t[1] ^ aes_key.ek[4 * aes_key.nr + 1];
s[2] = t[2] ^ aes_key.ek[4 * aes_key.nr + 2];
s[3] = t[3] ^ aes_key.ek[4 * aes_key.nr + 3];
//-----------Store as BigEndian--------------
for (int i = 0; i < 4; i++) {
ciphertext[4 * i + 0] = (s[i] >> 24) & 0xFF;
ciphertext[4 * i + 1] = (s[i] >> 16) & 0xFF;
ciphertext[4 * i + 2] = (s[i] >> 8) & 0xFF;
ciphertext[4 * i + 3] = (s[i] >> 0) & 0xFF;
}
}

void AES_Decrypt(uint8_t* ciphertext, uint8_t* plaintext, AES_Key aes_key) {
uint32_t s[4];
uint32_t t[4];
uint32_t tmp;
//------------Load as BigEndian------------------
for (int i = 0; i < 4; i++) {
s[i] = (ciphertext[4 * i + 0] << 24) | (ciphertext[4 * i + 1] << 16) |
(ciphertext[4 * i + 2] << 8) | (ciphertext[4 * i + 3]);
}
//----------------AddRoundKey----------------
s[0] ^= aes_key.dk[4 * aes_key.nr + 0];
s[1] ^= aes_key.dk[4 * aes_key.nr + 1];
s[2] ^= aes_key.dk[4 * aes_key.nr + 2];
s[3] ^= aes_key.dk[4 * aes_key.nr + 3];
for (int i = aes_key.nr - 1; i > 0; i--) {
//-------ShiftRow IV + SubByte IV + MixCol IV-------------
// t0
t[0] = TD[(s[0] >> 24) & 0xFF];
tmp = TD[(s[3] >> 16) & 0xFF];
t[0] ^= rotr32(tmp, 8);
tmp = TD[(s[2] >> 8) & 0xFF];
t[0] ^= rotr32(tmp, 16);
tmp = TD[(s[1] >> 0) & 0xFF];
t[0] ^= rotr32(tmp, 24);
// t1
t[1] = TD[(s[1] >> 24) & 0xFF];
tmp = TD[(s[0] >> 16) & 0xFF];
t[1] ^= rotr32(tmp, 8);
tmp = TD[(s[3] >> 8) & 0xFF];
t[1] ^= rotr32(tmp, 16);
tmp = TD[(s[2] >> 0) & 0xFF];
t[1] ^= rotr32(tmp, 24);
// t2
t[2] = TD[(s[2] >> 24) & 0xFF];
tmp = TD[(s[1] >> 16) & 0xFF];
t[2] ^= rotr32(tmp, 8);
tmp = TD[(s[0] >> 8) & 0xFF];
t[2] ^= rotr32(tmp, 16);
tmp = TD[(s[3] >> 0) & 0xFF];
t[2] ^= rotr32(tmp, 24);
// t3
t[3] = TD[(s[3] >> 24) & 0xFF];
tmp = TD[(s[2] >> 16) & 0xFF];
t[3] ^= rotr32(tmp, 8);
tmp = TD[(s[1] >> 8) & 0xFF];
t[3] ^= rotr32(tmp, 16);
tmp = TD[(s[0] >> 0) & 0xFF];
t[3] ^= rotr32(tmp, 24);
//-------------AddRoundKey---------------
s[0] = t[0] ^ aes_key.dk[4 * i + 0];
s[1] = t[1] ^ aes_key.dk[4 * i + 1];
s[2] = t[2] ^ aes_key.dk[4 * i + 2];
s[3] = t[3] ^ aes_key.dk[4 * i + 3];
}
//------------ShiftRow + SubByte-----------
// t0
t[0] = SboxIV[(s[0] >> 24) & 0xFF] << 24;
t[0] |= SboxIV[(s[3] >> 16) & 0xFF] << 16;
t[0] |= SboxIV[(s[2] >> 8) & 0xFF] << 8;
t[0] |= SboxIV[(s[1] >> 0) & 0xFF] << 0;
// t1
t[1] = SboxIV[(s[1] >> 24) & 0xFF] << 24;
t[1] |= SboxIV[(s[0] >> 16) & 0xFF] << 16;
t[1] |= SboxIV[(s[3] >> 8) & 0xFF] << 8;
t[1] |= SboxIV[(s[2] >> 0) & 0xFF] << 0;
// t2
t[2] = SboxIV[(s[2] >> 24) & 0xFF] << 24;
t[2] |= SboxIV[(s[1] >> 16) & 0xFF] << 16;
t[2] |= SboxIV[(s[0] >> 8) & 0xFF] << 8;
t[2] |= SboxIV[(s[3] >> 0) & 0xFF] << 0;
// t3
t[3] = SboxIV[(s[3] >> 24) & 0xFF] << 24;
t[3] |= SboxIV[(s[2] >> 16) & 0xFF] << 16;
t[3] |= SboxIV[(s[1] >> 8) & 0xFF] << 8;
t[3] |= SboxIV[(s[0] >> 0) & 0xFF] << 0;
//------------AddRoundKey-------------
s[0] = t[0] ^ aes_key.dk[0];
s[1] = t[1] ^ aes_key.dk[1];
s[2] = t[2] ^ aes_key.dk[2];
s[3] = t[3] ^ aes_key.dk[3];
//-----------Store as BigEndian--------------
for (int i = 0; i < 4; i++) {
plaintext[4 * i + 0] = (s[i] >> 24) & 0xFF;
plaintext[4 * i + 1] = (s[i] >> 16) & 0xFF;
plaintext[4 * i + 2] = (s[i] >> 8) & 0xFF;
plaintext[4 * i + 3] = (s[i] >> 0) & 0xFF;
}
}
int main() {
AES_Key aes_key;
// 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17
// 18 19 1a 1b 1c 1d 1e 1f
uint8_t key[256 / 8] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f };
// 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
uint8_t plaintext[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
uint8_t ciphertext[16];
//-----------AES 128-------------------
int success = AES_KeyInit(key, &aes_key, 128);
if (success) {
printf("-----------AES 128-------------\n");
// 69 c4 e0 d8 6a 7b 04 30 d8 cd b7 80 70 b4 c5 5a
AES_Encrypt(plaintext, ciphertext, aes_key);
for (int i = 0; i < 16; i++) {
printf("%02x ", ciphertext[i]);
}
printf("\n");
// 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
AES_Decrypt(ciphertext, plaintext, aes_key);
for (int i = 0; i < 16; i++) {
printf("%02x ", plaintext[i]);
}
printf("\n");
AES_KeyDelete(aes_key);
}
//-----------AES 196-------------------
success = AES_KeyInit(key, &aes_key, 196);
if (success) {
printf("-----------AES 196-------------\n");
// dd a9 7c a4 86 4c df e0 6e af 70 a0 ec 0d 71 91
AES_Encrypt(plaintext, ciphertext, aes_key);
for (int i = 0; i < 16; i++) {
printf("%02x ", ciphertext[i]);
}
printf("\n");
// 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
AES_Decrypt(ciphertext, plaintext, aes_key);
for (int i = 0; i < 16; i++) {
printf("%02x ", plaintext[i]);
}
printf("\n");
AES_KeyDelete(aes_key);
}
//------------AES 256-----------------
success = AES_KeyInit(key, &aes_key, 256);
if (success) {
printf("-----------AES 256-------------\n");
// 8e a2 b7 ca 51 67 45 bf ea fc 49 90 4b 49 60 89
AES_Encrypt(plaintext, ciphertext, aes_key);
for (int i = 0; i < 16; i++) {
printf("%02x ", ciphertext[i]);
}
printf("\n");
// 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
AES_Decrypt(ciphertext, plaintext, aes_key);
for (int i = 0; i < 16; i++) {
printf("%02x ", plaintext[i]);
}
printf("\n");
AES_KeyDelete(aes_key);
}
return 0;
}

注意点:

加解密密钥在查表法aes中不同

逆向时拿到其中一个可以推导另一个

1
2
3
4
dk[0]  = ek[10];                     // 最后一轮密钥直接用
dk[10] = ek[0]; // 第一轮密钥直接用
dk[i] = InvMixColumns(ek[10 - i]); // 中间轮要过一次逆MixColumns

不需要研究透算法逻辑,只需要知道大致原理和遇到时能识别出这是aes变种就可以了

白盒aes

白盒aes算是在逆向中最常见到的了,特点是隐藏密钥。

查表法 AES 提供了“把轮操作变成查表”的思路,白盒 AES 则利用这个查表方法隐藏密钥,

白盒 AES 和 “查表法 AES” 算法是同一回事,可以把白盒AES看成查表AES的加强版(把密钥也混淆进表里了),一些密码学库会在 AES_init 的时候预处理并展开 key;如果 key 是字面量,还可能在编译时进行常量计算。这样编译后的可执行文件中就没有明文 key 了。

DFA攻击

白盒aes最主要的破解方式就是dfa攻击

我们需要的攻击条件:

原理:

在白盒攻击模型中,我们可以通过DBI工具(比如Frida),Debuggger(比如IDA),修改二进制文件本身 (SO patch)来实现对 中一个字节的更改,这可以称为引导、诱发一个错误。 因此差分故障攻击或差分错误攻击都是DFA合适的名字,下面修改明文中中第一个字节的值

首先是初始轮密钥加,错误限于这一个字节

DFA1

然后是第一轮的字节替换,错误限于这一个字节

DFA2

然后是第一轮的循环左移,因为是第一行,所以没动。

DFA3

然后是第一轮的列混淆步骤,结果的第m行第n列的值等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和,因此结果中第一列的每一个元素都受到矩阵B(即下图左边)第一列中每个元素的影响。因而,一个字节的错误被扩散到了一整列。或者说,正常情况和故障情况在第一轮列混淆结束后,有四个字节的值不同。

DFA4

然后是第一轮的轮密钥加,它只作用用当前字节,不会将差异扩散出去。

DFA5

可以看到,在一轮循环后,一个字节的故障,被扩散到了四个字节上。继续第二轮。
第二轮的字节替换

DFA6

第二轮的循环左移,需要注意到,虽然差异还是四个字节,但被扩散到不同的四列去了。

DFA7

第二轮的列混淆,每列存在的差异扩散到整列,这导致state的全部字节都与原先有差异。

DFA8

所以DFA攻击就是从第9轮攻击的行移位和列混淆中间更改1个数据,创造差错点,然后从最后拿到密文来分析故障结果(有四个差错点),由于aes一次可加密16个字节,所以可以得出16种不同的故障情况,那我们就可以通过数学间的关系,把密钥反解出来

攻击实现

在调试时更改第九轮对应字节即可,明文要求输入的话直接全输入\x00,在第9轮进行故障注入,假设正常明文(无故障)加密结果为0x8df4e9aac5c7573a27d8d055d6e4d64b

注入时把第一个字节改为0x10,第十轮结束后结果:

8d f4 e9 aa c5 c7 57 3a 27 d8 d0 55 d6 e4 d6 4b
da f4 e9 aa c5 c7 57 c9 27 d8 53 55 d6 37 d6 4b
确实有4个字节不一样。以此类推,得到16个不一样的带差错的密文

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
daf4e9aac5c757c927d85355d637d64b
47f4e9aac5c7577d27d8a655d61ed64b
79f4e9aac5c7572a27d89855d62ad64b
30f4e9aac5c7570b27d86555d6a5d64b
8d7de9aac8c7573a27d8d09ed6e4be4b
8d5ce9aa43c7573a27d8d04cd6e4054b
8d0de9aaddc7573a27d8d060d6e4234b
8dabe9aacac7573a27d8d009d6e4484b
8df48caac598573a62d8d055d6e4d636
8df4bbaac5f4573acdd8d055d6e4d693
8df47aaac576573ac1d8d055d6e4d61c
8df444aac5c8573a23d8d055d6e4d6fb
8df4e9e0c5c7b73a2768d055ade4d64b
8df4e9f2c5c7063a27a4d055dfe4d64b
8df4e942c5c7793a275ed05535e4d64b
8df4e98fc5c7fa3a2778d055b3e4d64b

有了这个以后我们就可以还原得到第十轮的密钥了,这里使用phoenixAES工具,先安装:

1
pip install phoenixAES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#!/usr/bin/env python3
import phoenixAES

with open('tracefile', 'wb') as t:
t.write("""
8df4e9aac5c7573a27d8d055d6e4d64b
daf4e9aac5c757c927d85355d637d64b
47f4e9aac5c7577d27d8a655d61ed64b
79f4e9aac5c7572a27d89855d62ad64b
30f4e9aac5c7570b27d86555d6a5d64b
8d7de9aac8c7573a27d8d09ed6e4be4b
8d5ce9aa43c7573a27d8d04cd6e4054b
8d0de9aaddc7573a27d8d060d6e4234b
8dabe9aacac7573a27d8d009d6e4484b
8df48caac598573a62d8d055d6e4d636
8df4bbaac5f4573acdd8d055d6e4d693
8df47aaac576573ac1d8d055d6e4d61c
8df444aac5c8573a23d8d055d6e4d6fb
8df4e9e0c5c7b73a2768d055ade4d64b
8df4e9f2c5c7063a27a4d055dfe4d64b
8df4e942c5c7793a275ed05535e4d64b
8df4e98fc5c7fa3a2778d055b3e4d64b
""".encode('utf8'))
phoenixAES.crack_file('tracefile', [], True, False, 3)

一共写入了17行数据到文件,其中第一行为正确的密文,剩余16行都是故障密文,最终通过crack_file即可得到第10轮密钥:

1
2
Last round key #N found:
D014F9A8C9EE2589E13F0CC8B6630CA6

还原最初密钥:

接下来用开头DFA攻击第三个工具里的aes_keyschedule.c,在本地编译后运行

1
./aes_keyschedule 5D432583B2AA833FC22D53130FDA904C 10

执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
./aes_keyschedule D014F9A8C9EE2589E13F0CC8B6630CA6 10
K00: 2B7E151628AED2A6ABF7158809CF4F3C
K01: A0FAFE1788542CB123A339392A6C7605
K02: F2C295F27A96B9435935807A7359F67F
K03: 3D80477D4716FE3E1E237E446D7A883B
K04: EF44A541A8525B7FB671253BDB0BAD00
K05: D4D1C6F87C839D87CAF2B8BC11F915BC
K06: 6D88A37A110B3EFDDBF98641CA0093FD
K07: 4E54F70E5F5FC9F384A64FB24EA6DC4F
K08: EAD27321B58DBAD2312BF5607F8D292F
K09: AC7766F319FADC2128D12941575C006E
K10: D014F9A8C9EE2589E13F0CC8B6630CA6

即可得到密钥为2B7E151628AED2A6ABF7158809CF4F3C

最后附上白盒aes的实现代码,有兴趣的可以自己看一看GitHub - Nexus-TYF/Xiao-Lai-White-box-AES: A Xiao-Lai's white-box AES implementation.

Reference

https://zhuanlan.zhihu.com/p/42264499

找回消失的密钥 —- DFA分析白盒AES算法 - 奋飞安全

https://www.zskkk.cn/posts/15785/#%E8%BF%98%E5%8E%9F%E5%AF%86%E6%96%87

您的支持将鼓励我继续创作!

欢迎关注我的其它发布渠道